Package: briKmeans 1.0
briKmeans: Package for Brik, Fabrik and Fdebrik Algorithms to Initialise Kmeans
Implementation of the BRIk, FABRIk and FDEBRIk algorithms to initialise k-means. These methods are intended for the clustering of multivariate and functional data, respectively. They make use of the Modified Band Depth and bootstrap to identify appropriate initial seeds for k-means, which are proven to be better options than many techniques in the literature. Torrente and Romo (2021) <doi:10.1007/s00357-020-09372-3> It makes use of the functions kma and kma.similarity, from the archived package fdakma, by Alice Parodi et al.
Authors:
briKmeans_1.0.tar.gz
briKmeans_1.0.zip(r-4.5)briKmeans_1.0.zip(r-4.4)briKmeans_1.0.zip(r-4.3)
briKmeans_1.0.tgz(r-4.4-any)briKmeans_1.0.tgz(r-4.3-any)
briKmeans_1.0.tar.gz(r-4.5-noble)briKmeans_1.0.tar.gz(r-4.4-noble)
briKmeans_1.0.tgz(r-4.4-emscripten)briKmeans_1.0.tgz(r-4.3-emscripten)
briKmeans.pdf |briKmeans.html✨
briKmeans/json (API)
# Install 'briKmeans' in R: |
install.packages('briKmeans', repos = c('https://aurora-torrente.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:cff507e4da. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 14 2024 |
R-4.5-win | OK | Nov 14 2024 |
R-4.5-linux | OK | Nov 14 2024 |
R-4.4-win | OK | Nov 14 2024 |
R-4.4-mac | OK | Nov 14 2024 |
R-4.3-win | OK | Nov 14 2024 |
R-4.3-mac | OK | Nov 14 2024 |
Exports:brikelbowRulefabrikfdebrikkmakma.similarityplotKmeansClustering
Dependencies:bootclusterdepthToolsRcppRcppArmadillosplines2